If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+5x-1.1=0
a = 10; b = 5; c = -1.1;
Δ = b2-4ac
Δ = 52-4·10·(-1.1)
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{69}}{2*10}=\frac{-5-\sqrt{69}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{69}}{2*10}=\frac{-5+\sqrt{69}}{20} $
| -1/2x=2x+5 | | y+-3=5 | | E^(4x)=19 | | 25x-10=65 | | Xx4=-12+3 | | -2n+8=-10n | | X-3x4=-12 | | 4x+10+x+25+x+30=180 | | 0.5x=3x | | 3x+2=22–2x | | .6=x/38.4 | | |3m+5|=-12 | | 8=0.4n | | -6×(2r+8)=-12×(r-3) | | .7=x/38.4 | | 10-4y=5 | | 10-5y=2 | | (5x+18)/5=73 | | 2(1-2x)=10 | | (P-4)=(p^2+3p-5) | | P-4)=(p^2+3p-5) | | (P-4)=p^2+3p-5 | | 2x-5+33x+8=18 | | 17y=11 | | -(9w+6)=3(7+7+6w | | (3b+5)=(b-7) | | 3x+(12/5)=49 | | 0=3q^2-7q+2 | | 3x-3=81 | | 5x+5=-72-6 | | 5-2(x+1)=10 | | 2x+2x+3=4x-2-1 |